Integrative Genomic Analysis Identifies Isoleucine and CodY as Regulators of Listeria monocytogenes Virulence
نویسندگان
چکیده
Intracellular bacterial pathogens are metabolically adapted to grow within mammalian cells. While these adaptations are fundamental to the ability to cause disease, we know little about the relationship between the pathogen's metabolism and virulence. Here we used an integrative Metabolic Analysis Tool that combines transcriptome data with genome-scale metabolic models to define the metabolic requirements of Listeria monocytogenes during infection. Twelve metabolic pathways were identified as differentially active during L. monocytogenes growth in macrophage cells. Intracellular replication requires de novo synthesis of histidine, arginine, purine, and branch chain amino acids (BCAAs), as well as catabolism of L-rhamnose and glycerol. The importance of each metabolic pathway during infection was confirmed by generation of gene knockout mutants in the respective pathways. Next, we investigated the association of these metabolic requirements in the regulation of L. monocytogenes virulence. Here we show that limiting BCAA concentrations, primarily isoleucine, results in robust induction of the master virulence activator gene, prfA, and the PrfA-regulated genes. This response was specific and required the nutrient responsive regulator CodY, which is known to bind isoleucine. Further analysis demonstrated that CodY is involved in prfA regulation, playing a role in prfA activation under limiting conditions of BCAAs. This study evidences an additional regulatory mechanism underlying L. monocytogenes virulence, placing CodY at the crossroads of metabolism and virulence.
منابع مشابه
Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector
Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global reg...
متن کاملSystems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes
Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chain...
متن کاملDifferential gene expression of Listeria monocytogenes during high hydrostatic pressure processing.
High hydrostatic pressure processing (HPP) is currently being used as a treatment for certain foods to control the presence of food-borne pathogens, such as Listeria monocytogenes. Genomic microarray analysis was performed to determine the effects of HPP on L. monocytogenes in order to understand how it responds to mechanical stress injury. Reverse transcriptase PCR analysis of tufA and rpoC in...
متن کاملDevelopment of ListeriaBase and comparative analysis of <i>Listeria monocytogenes</i>
Background: Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give be...
متن کاملGenome Sequence of Listeria monocytogenes Strain F6540 (Sequence Type 360) Collected from Food Samples in Ontario, Canada
Comparative genomic analysis between pathogenic and nonpathogenic Listeria monocytogenes strains provides a good model for studying the virulence of this organism. Here, we report the genome sequence of the nonpathogenic L. monocytogenes strain F6540 (sequence type 360) identified specifically in food samples in Ontario, Canada, in 2010.
متن کامل